
Chapter 41
Causality and Design-Based Inference

Jake Bowers and Thomas Leavitt

Abstract

Counterfactual causal quantities cannot be observed, but researchers can use statistical pro-
cedures – namely, estimators and hypothesis tests – to draw inferences from data that can be
observed. In this chapter, we present a unified account of estimation and testing for causal
inference, showing how a study’s research design can provide a foundation for both estimators
and tests. We show how certain characteristics of research designs can justify claims that a
given estimator or test has ‘good’ properties (e.g., unbiasedness, consistency, controlled error
rates). We first develop ideas in the context of a randomized controlled experiment. In that
context, we juxtapose estimations of and tests about causal effects and then provide an ex-
plicit comparison of Fisherian and Neymanian hypothesis tests. We then extend our analysis
to research designs that are either partially controlled (e.g., experiments with noncompliance
and/or attrition) or uncontrolled (e.g., observational studies). We show the ways in which
knowledge and assumptions about research design – as well as assessments of how inferences
would change should these assumptions be false – constitute a reliable basis for causal infer-
ence. We conclude by discussing the value of design-based causal inference in light of recent
debates on its role in social scientific inquiry more broadly.
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Design-Based Causal Inference
No one knows the true causal effect of an intervention. In an experiment, a researcher can assign

some units to treatment and others to control; yet, one cannot see how treated units would

have acted were they assigned to control nor how the control units would have acted were they

assigned to treatment.1 In the face of this fundamental ignorance, statisticians have developed

two prominent approaches to inferring unobservable causal effects using data that can be observed.

An analyst can either (1) generate a guess about (usually average) treatment effects or (2) posit

a hypothesis about the effects of a treatment (such as the hypothesis that a treatment had no

effects) and then assess the consistency of observable data with that null hypothesis, relative to a

class of alternative hypotheses (such as the hypothesis that a treatment had a positive effect).

In what follows, we will define criteria by which a procedure qualifies as ‘good’ in the context

of both estimation and testing and subsequently explain the role that research design plays in

whether estimators and tests satisfy these criteria. We consider estimators and tests about causal

effects first in the context of a randomized study design under full control of the researcher and

second in cases in which the researcher does not fully control the study design. We show the ways

in which either complete knowledge or assumptions (and the ways in which they could be violated)

about the study design constitute what Fisher (1935) referred to as a ‘reasoned basis for inference’.

Causality and Research Design

Defining Causal Effects

Consider a study in which there is a finite population of 1, . . . , N units and the index i ∈ {1, . . . , N}

runs over these units. Each individual, i, can be in either the treatment condition, zi = 1, or the

control condition, zi = 0. Under the Stable Unit Treatment Value Assumption (SUTVA) (Cox,

1958; Rubin, 1980, 1986), each individual has a treated potential outcome, yt,i (unit i’s outcome

if given the intervention), and a control potential outcome, yc,i (unit i’s outcome if not given the

intervention).2 An individual causal effect, τi, for each of the i ∈ {1, . . . , N} units is a function
1Holland (1986, 947) refers to the inability to observe both potential outcomes for a single unit at the same

moment in time as the ‘fundamental problem of causal inference.’
2For simplicity, we consider studies in which there are two conditions—treatment and control—although the

same general principles apply to studies with multiple conditions (see Dasgupta et al., 2015).
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of each unit’s two potential outcomes, τi ≡ f
(
yc,i, yt,i

)
, such as τi ≡ yt,i

yc,i
or τi ≡ yt,i − yc,i. For

this chapter, we focus specifically on the additive, individual causal effect defined as τi ≡ yt,i− yc,i.

Researchers, however, can never observe both potential outcomes for each unit; instead, one can

observe only yi, which can be equal to either yc,i or yt,i, depending on whether unit i is assigned to

treatment (zi = 1) or control (zi = 0). We therefore represent observed outcomes by the function

yi = ziyt,i + (1− zi) yc,i. For example, researchers may want to make an inference about the

1, . . . , N individual causal effects, which we collect into the vector τττ ′ =
[
τ1 τ2 · · · τN

]
, or about

a function of these individual causal effects, such as the average causal effect, τ̄ =
(

1
N

) N∑
i=1

τi. We

say that researchers want to ‘make an inference’ because neither τττ nor τ̄ can be directly observed.

Researchers, of course, don’t simply want to ‘make an inference’: they want to make inferences

that can reliably track the true causal quantity of interest. This chapter shows how inferential

procedures based on the research design can have such a reliable relationship with true causal

quantities and explains what it means for a procedure to be ‘based on research design’.

Defining a Research Design

Although a research design can certainly be more than this, for the purposes of this chapter a

research design refers to the process by which units come to be in one study condition instead of

another, i.e., each zi comes to equal 1 or 0. More formally, we denote the collection of the values

of zi for all i ∈ {1, . . . , N} units by the vector z′ =
[
z1 · · · zN

]
and define a research design as

(1) a set of possible ways (events) in which the whole vector z could occur and (2) a probability

distribution on this set of possible events. In a controlled study design (i.e., an experiment), we

think of a researcher as ‘assigning’ conditions to all units in the study. When a researcher does

not control how a unit i takes on a value of zi, we think of that unit as ‘selecting’ into its own

condition. As we lay the groundwork of concepts and notation, we write ‘assignment’ and assume

control by the researcher, but we will apply the general framework later to uncontrolled research

designs in which units ‘select’ into study conditions.

The set of possible ways in which z can occur depends on the process by which units are assigned

to study conditions. If individuals can be in either the treatment or control condition irrespective

of any other individual in the population, then we call this process individual assignment. As
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a simple example, consider the ‘coin flip’ assignment process: in this case, the proportion of N

individuals in either the treatment or control condition can vary across different assignments. We

refer to this process as simple individual assignment. A researcher can implement simple individual

assignment via an actual physical, stochastic process, such as N flips of a (potentially biased) coin

– although in practice researchers will typically use random number generators (RNGs).

Under completely unconstrained simple individual assignment, the number of units in the

treatment condition can range from 0 to N and the number of units in the control condition can

likewise range from N − 0 to N −N . More formally, we write the set, Ω, of possible ways that a

researcher can assign all individuals to study conditions as follows:

(1) Ω = {0, 1}N =




0
0
...
0
0

 ,


1
0
...
0
0

 ,


0
1
...
0
0

 , · · · ,


1
0
...
1
1

 ,


0
1
...
1
1

 ,


1
1
...
1
1




.

We can write the number of possible assignments in the set Ω by |Ω| (the ‘cardinality of Omega’),

under simple assignment as follows:

|Ω| =
(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

N − 1

)
+

(
N

N

)
=

N∑
nt=0

(
N

nt

)
,

where nt =
∑N

i=1 zi is the number of units in the treatment condition, which can range from 0 to

N , and
(
N
nt

)
= N !

nc!nt!
is the number of ways to choose nt units from a total of N units. Conversely,

nc =
∑N

i=1 (1− zi) is the number of units in the control condition, which can range from N − 0 to

N−N . In practice, researchers who control the assignment process will typically forbid assignments

in which all units are in either condition (the first and last assignments in Equation (1)), in which

case |Ω| =
N−1∑
nt=1

(
N
nt

)
.

The ‘coin flipping’ design helps us introduce the formal elements of a research design. In

practice, individual coin flips can lead to lopsided designs in which many units are in one condition
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or another. An alternative design that enables the researcher to control the numbers of units in

each condition is complete assignment.

Complete individual assignment differs from simple, individual assignment only in that the

value of nt is fixed across all possible assignments. We have described simple individual assignment

via the example of coin flips. Complete individual assignment can be thought of as draws from an

urn. Imagine, for example, that an urn contains N balls, of which nt are blue balls and N−nt = nc

are red balls. The researcher could draw the first ball from the urn and assign the first unit in the

study to the treatment condition if the ball is blue and to the control condition if the ball is red.

The second draw could follow the same rule for the assignment of the second unit, and so on and so

forth until no more balls remain in the urn. This form of assignment ensures that exactly nt units

are in the treatment condition and N − nt = nc units are in the control condition. More formally,

complete individual assignment excludes any assignment, z, with more or less treatment units, nt,

than that which is predetermined by the researcher. Therefore, under complete assignment, the

number of possible assignments is simply |Ω| =
(
N
nt

)
.

Simple and complete assignment can also happen at the cluster (as opposed to the individual)

level. In this setup, we not only have a set of 1, . . . , N individuals, but also a set of 1, . . . , K

clusters, where each cluster, k ∈ {1, . . . , K}, contains Nk ≥ 1 individual units and N =
K∑
k=1

Nk. In

cluster assignment designs, all of the i ∈ {1, . . . , Nk} units in the kth cluster are assigned to either

the treatment condition, zi,k = 1, or the control condition, zi,k = 0. In simple cluster assignment,

the number of possible assignments is given by |Ω| =
K∑

kt=0

(
K
kt

)
, where kt denotes the number of

treatment clusters, although (just as in simple individual assignment) researchers will typically

ensure that kt /∈ {0, K}. Under complete cluster assignment, the number of treatment clusters is

fixed, such that the number of assignments is |Ω| =
(
K
kt

)
.

Lastly, blocked assignment is when individuals or clusters are assigned (either simply or com-

pletely) to study conditions within blocks, which we index from b ∈ {1, . . . , B}. Blocks are typically

constructed on the basis of individuals’ or clusters’ values of baseline covariates. Baseline covari-

ates are measured prior to assignment and hence their values are fixed regardless of the condition

to which a unit or cluster is assigned. Under simple individual block assignment, the number of
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possible assignments is |Ω| =
B∏
b=1

(
Nb−1∑
nt,b=1

(
Nb

nt,b

))
, where Nb is the number of units in block b, nt,b

is the number of units in the treatment condition in block b and nt,b /∈ {0, Nb} for all b. Under

complete individual block assignment |Ω| =
B∏
b=1

(
Nb

nt,b

)
, one can analogously deduce the number of

possible assignments under either simple or complete cluster block assignment. As we will explain

in subsequent sections, block assignment carries important implications for properties of both

estimators and hypothesis tests.

Given a set of possible assignments, Ω, arising from an assignment mechanism, the remaining

component of a research design is a probability distribution on this set of assignments. In a

uniform randomized experiment, the probability of each assignment is simply 1
|Ω| for all z, whereby

each assignment has an identical probability of realization. Yet the probability distribution on

Ω need not be uniform, even in a randomized experiment. Design-based inference means only

that the stochastic properties of estimators and tests be based on this probability distribution on

Ω, regardless of whether that distribution is uniform or not. As we now move to discussions of

both estimation and testing, notice throughout that whenever we refer to random quantities, the

randomness of those quantities stems solely from the probability distribution on Ω.

An Illustrative Example

In the sections to follow, we demonstrate our arguments via a simple hypothetical example that

consists of N = 6 units and an individual assignment process (complete individual assignment)

in which three units are assigned to treatment (nt = 3) and to control (nc = 3). Let’s further

imagine that (unbeknownst to the researcher) the six units’ potential outcomes and individual

causal effects are as follows in Table 41.1:
yc yt τττ

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

Table 41.1: True values of yc, yt and τττ , where τi = yt,i − yc,i, for the study population

Based on the complete individual assignment process in which there are N = 6 units and of
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which nt = 3 are assigned to treatment, the set of |Ω| =
(
6
3

)
= 20 possible assignments is given by

Equation (2):

(2) Ω =





1
1
1
0
0
0


,



1
1
0
1
0
0


, · · · ,



0
0
1
0
1
1


,



0
0
0
1
1
1




.

The assignment that one draws from the set, Ω, determines which potential outcomes one

observes. One can observe treatment potential outcomes only for units assigned to treatment,

and control potential outcomes only for units assigned to control (recall the function yi = ziyt,i +

(1− zi) yc,i, which determines the potential outcome that one observes for each individual i). As

Table 41.2 shows, for each of the
(
6
3

)
= 20 possible assignments, there are

(
6
3

)
= 20 corresponding

possible realizations of observed data, where ‘?’ throughout this chapter denotes an unobserved

and hence unknown potential outcome.
z1 yc yt y1

1 ? 22 22
1 ? 12 12
1 ? 11 11
0 10 ? 10
0 14 ? 14
0 1 ? 1

z2 yc yt y2

1 ? 22 22
1 ? 12 12
0 11 ? 11
1 ? 15 15
0 14 ? 14
0 1 ? 1

· · ·

z19 yc yt y19

0 20 ? 20
0 8 ? 8
1 ? 11 11
0 10 ? 10
1 ? 18 18
1 ? 4 4

z20 yc yt y20

0 20 ? 20
0 8 ? 8
0 11 ? 11
1 ? 15 15
1 ? 18 18
1 ? 4 4

Table 41.2: All possible realizations of experimental data from a completely randomized study with 6
units and 3 treated units.

Only one such possible realization of data in Table 41.2 can be observed; but, knowing that

there are 20 possible realizations allows the researcher to use procedures – e.g., estimators or

hypothesis tests – to make inferences about unobservable causal quantities based on the single

observed realization. We want procedures for drawing causal inferences to have properties that

are ‘good’ (a notion that we will define more precisely in later sections). These properties describe

or measure a procedure’s performance in two contexts: (1) studies with a fixed, finite population

and (2) a hypothetical scenario in which the size of a given study increases towards ∞ while all

other relevant factors remain constant. We refer to the latter context as one of asymptotic growth,

which we conceptualize below.
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If we have an experimental pool of six units, that is not a sample using a known procedure from

a well-defined population, what does ‘asymptotic growth’ mean? We follow Brewer (1979) and

Middleton and Aronow (2015) in using the idea of ‘copies’ as a way to talk about how estimators

and tests behave as study sizes increase. In short, this conception of asymptotic growth states

that (1) the original population of N units is copied h − 1 times, (2) within each of the h copies,

exactly nt units are assigned to the treatment condition and the remaining nc = N − nt units are

assigned to the control condition and (3) the h copies are then collected into a single population

with hN total units, hnt treated units and hnc control units.

In the context of our working example, this conception of growth stipulates that the study

population of N = 6 units is embedded in a sequence of populations of increasing sizes in which

the initial population is simply copied h− 1 times.

yc yt τττ

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

yc yt τττ

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

yc yt τττ

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

yc yt τττ

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

20 22 2
8 12 4
11 11 0
10 15 5
14 18 4
1 4 3

· · ·

Table 41.3: Finite populations under asymptotic growth in which h ∈ {1, 2, 3, 4, . . .}

Notice that over this sequence of increasing finite populations shown in Table 41.3, all relevant

factors other than N remain constant: the proportions of treatment and control units remain fixed

and the mean of control and treatment potential outcomes remain fixed, as do their variances and

their covariance. Notice, however, that the number of possible assignments increases over this

sequence of increasing finite populations from
(
6
3

)
= 20 to

(
12
6

)
= 924 and from

(
18
9

)
= 48620 to
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(
24
12

)
= 2704156 and so forth.

We will show that, in either the finite context – given in Table 41.1 – or in the asymptotic

context – given in Table 41.3 – whether a procedure is ‘good’ depends on whether it maintains

fidelity to the research design – i.e., the probability distribution on the set Ω. In other words,

we will show that in a randomized experiment, a ‘good’ procedure is one that heeds the dictum

of Senn (2004, 3729) who, in the voice of R. A. Fisher, states that ‘[a]s ye randomise so shall ye

analyse’.

Estimation
As we have mentioned above, no one can observe both potential outcomes for any given unit in

a given study population. One can, however, generate a guess about some function of the study

population’s individual causal effects (e.g., the mean causal effect) using observed outcomes. We

call this unobservable causal quantity the estimand. The estimator, by contrast, refers to the

procedure that generates a guess about the estimand. An estimate is the actual output of the

estimator once it is applied to a given data set.

One estimand is the mean causal effect, τ̄ =
(

1
N

) N∑
i=1

τi, which, to return to the example from

Table 41.1, is τ̄ = 2+4+0+5+4+3
6

= 3. A procedure for generating a guess about τ̄ is the Difference-

in-Means estimator, which we can define in terms of observable quantities as follows:

ˆ̄τ (Z,Y) =
Z′Y
Z′Z − (1 − Z)′Y

(1 − Z)′(1 − Z)

=

 1
N∑
i=1

Zi


N∑
i=1

ZiYi −

 1
N∑
i=1

(1− Zi)


N∑
i=1

(1− Zi)Yi.

(3)

In the example from Table 41.1, the random vectors3 of Z and Y can take on any of the possible

values, (z1,y1) , · · · , (z20,y20), given in Table 41.2. If we apply the estimator in Equation (3) to

the possible realizations of data in Table 41.2, then there are 20 possible estimates that correspond
3To distinguish between fixed quantities and quantities that can take on different values with certain probabilities

(i.e., random quantities), we now use uppercase letters for random quantities and lowercase letters for fixed or
realized quantities.
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to each of the 20 possible realizations of data:

ˆ̄τ (z1,y1) = 6.6667, ˆ̄τ (z2,y2) = 7.6667, · · · , ˆ̄τ (z19,y19) = −1.6667, ˆ̄τ (z20,y20) = −0.6667.

The researcher can observe only one of these 20 possible estimates and this single estimate should be

generated by an estimator that is ‘good’. More specifically, three ‘good’ properties of an estimator

are unbiasedness, consistency and precision. An unbiased estimator is one in which, although any

single estimate may be close to or far from the true value of the estimand, the expected value

of the estimator – i.e., the probability-weighted mean of all possible estimates – is equal to the

value of the estimand. Consistency states that as the number of units in the study increases

asymptotically, holding all other factors constant, the probability distribution of an estimator

concentrates increasingly around the truth. (For any fixed ε > 0, the probability that the estimate

and its target differ by no more than ε tends to 1.) Lastly, a precise estimator is one in which the

expected distance of an estimate from the true causal effect is small.

In the following discussion, we show the role that research design plays in whether the Difference-

in-Means estimator is unbiased, consistent and/or precise with respect to the estimand τ̄ =(
1
N

) N∑
i=1

τi. We also show how designs can yield estimators that are more or less precise. Re-

searchers may want to estimate quantities other than τ̄ . Although we do not discuss such cases,

the general principles for determining whether an estimator is unbiased, consistent and/or precise

with respect to the causal quantity of interest is the same: researchers can define an estimand

that they seek to infer, define an estimator by which they would estimate this quantity under all

possible realizations of data and subsequently assess whether this estimator is unbiased, consistent

and/or precise based only on the probabilities with which possible data are realized.

Unbiasedness

We now show that a ‘good’ estimator of the unknown estimand, τ̄ , is the estimator given in

Equation (3), ˆ̄τ (Z,Y). In particular, we will show that this estimator satisfies the criterion of
4When the numbers of treatment and control units are not fixed, such as in simple, individual assignment, the

Difference-in-Means estimator remains unbiased in a uniform randomized experiment so long as at least one unit
is always in the treatment and control conditions, respectively. In general, when the numbers of treatment and
control are not fixed, the Difference-in-Means estimator is not necessarily unbiased, such as in cluster uniform
random assignment when clusters are of unequal sizes (see Middleton and Aronow, 2015).
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no systematic error – i.e., unbiasedness – in a uniform randomized experiment, when the numbers

of treatment and control units are both fixed.4 Whether the Difference-in-Means estimator is

unbiased with respect to τ̄ depends solely on the known research design, i.e., whether or not there

is a uniform probability distribution on the set of assignments.

Returning to the example from Table 41.1, recall that if we apply the estimator in Equation (3)

to the possible realizations of data in Table 41.2, then there are 20 possible estimates that corre-

spond to each of the 20 possible realizations of data:

ˆ̄τ (z1,y1) = 6.6667, ˆ̄τ (z2,y2) = 7.6667, . . . , ˆ̄τ (z19,y19) = −1.6667, ˆ̄τ (z20,y20) = −0.6667.

Informally, an unbiased estimator produces a guess about the estimand with no systematic error.

Slightly more formally, an estimator is unbiased if the average of all possible estimates is equal

to the true value of the estimand. This average of estimates, however, must be weighted by the

probabilities of observing each possible estimate; we call this average the ‘expected value’ and

denote the expected value of the Difference-in-Means estimator by E
[
ˆ̄τ (Z,Y)

]
.

To calculate the expected value of the Difference-in-Means estimator to assess properties like

bias and consistency, we need to know the probability associated with each of these 20 possible

estimates. We know that the estimator is a function of two random quantities, Z and Y, but

Y inherits randomness only from Z, since Yi = Ziyt,i + (1− Zi) yc,i for all i ∈ {1, . . . , N} units.

Therefore, each probability associated with its corresponding estimate depends only on Z. So, we

calculate the expected value of the estimator in general as follows:

E
[
ˆ̄τ (Z,Y)

]
= ˆ̄τ (z1,y1)Pr (Z = z1) + · · ·+ ˆ̄τ

(
z|Ω|,y|Ω|

)
Pr
(

Z = z|Ω|

)
.

In the context of the running example, there are 20 possible estimates corresponding to each of

the z1, . . . , z20 possible assignments, and the probability of each of those possible assignments is
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1
20

. Therefore, the expected value of the Difference-in-Means estimator is

E
[
ˆ̄τ (Z,Y)

]
= ˆ̄τ (z1,y1)Pr (Z = z1) + · · ·+ ˆ̄τ (z20,y20)Pr (Z = z20)

= 6.6667

(
1

20

)
+ · · ·+−0.6667

(
1

20

)
= 3.

In this example, the expected value of the estimator, E
[
ˆ̄τ (Z,Y)

]
, is exactly equal to the true

mean causal effect, τ̄ . The estimator is unbiased given the design. If Pr (Z = z) did not equal 1
20

for all z – i.e., if some assignments were more or less probable than others – then the Difference-

in-Means estimator might not be unbiased. In general, the equality between E
[
ˆ̄τ (Z,Y)

]
and τ̄

holds when (1) units are assigned to study conditions as individuals (not as groups, i.e., clusters),

(2) there is always at least one unit in the treatment condition and one in the control condition

and (3) each possible assignment has an identical probability of realization. In other words, the

Difference-in-Means estimator is unbiased with respect to the mean additive causal effect in a

uniform randomized experiment under either complete individual assignment or simple individual

assignment so long as there is always at least one unit in each of the study conditions.

Notice that the Difference-in-Means estimator did not require large numbers of units or as-

sumptions about the distributions of potential outcomes to be unbiased. The potential outcomes

could have been any set of values and the property of unbiasedness would still have held. However,

the unbiasedness property did require that there be a uniform probability distribution on the set

of possible assignments. But in a controlled research design, like a randomized experiment, the

researcher knows whether or not this condition is true.

Consistency

‘No systematic error’ is not the same as ‘close to the truth’. Achen (1982, 36) explains the need

for another conception of a ‘good’ estimator when he writes ‘[u]nbiasedness is too weak a property,

since it says nothing about approximating the truth’. While we know that an unbiased estimator

yields estimates that are, on average, equal to the true value of the estimand, any single estimate

might be far from the truth. In our running example, not one of the 20 possible estimates is actually
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equal to the true mean causal effect of τ̄ = 3, even though the probability-weighted average of

those 20 estimates is equal to 3. Another ‘good’ characteristic of an estimator is to produce values

close to the truth, especially as the size of the experiment grows larger while other factors remain

constant, and more information is supplied to the estimator from the design.

In contrast to unbiasedness, consistency states that as the number of units in the study grows

asymptotically, holding all other factors constant, the probability of an estimate within an arbi-

trarily small distance, ε, from the truth is equal to 1. More formally, we can define consistency as

follows:

(4) lim
h→∞

Pr
(∣∣∣ˆ̄τ (Z,Y)− τ̄

∣∣∣ < ε

)
= 1 for all ε > 0

or equivalently as

(5) lim
h→∞

Pr
(
ˆ̄τ (Z,Y) ∈ (τ̄ − ε, τ̄ + ε)

)
= 1 for all ε > 0,

where, referring back to the conception of asymptotic growth in Table 41.3, h is the number of

copies of the original finite population from Table 41.1.

To unpack Equations (4) and (5), Figure 41.1 shows what happens to the distribution of the

Difference-in-Means estimator under complete random assignment as h → ∞.

12



h = 1 h = 2 h = 3 h = 4

−5 0 5 10 −5 0 5 10 −5 0 5 10 −5 0 5 10

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

0.000

0.025

0.050

0.075

0.100

Difference−in−Means estimates

P
ro

ba
bi

lit
y

Figure 41.1: Distribution of Difference-in-Means estimator as h → ∞

The general trend is that the probability of estimates close to the true mean causal effect,

τ̄ = 3, grows larger and larger and ultimately converges in probability (over the sequence of

increasing finite populations) to 1. For example, following Equation (5), consider the probability

that an estimate lies on the interval (3− ε, 3 + ε) and let ε = 1. The respective probabilities of

an estimate on this interval for h ∈ {1, 2, 3, 4} are 0.1, 0.2359, 0.2559 and 0.2994, and as h → ∞,

that probability tends to 1. This property holds for ε = 1 as well as for any positive value of ε

that one could choose. For example, we could have let ε = 0.5, in which case the corresponding

probabilities for h ∈ {1, 2, 3, 4} are 0.1, 0.1234, 0.1522 and 0.1643, and the limiting probability as

h → ∞ is also 1. In general, it is not necessary that each probability be greater than its predecessor

for h ∈ {1, 2, 3, 4, . . .}. Consistency states only that there exists some number in which, for any h

greater than that number, the estimator will lie within an interval of ε from the true mean causal

effect.

In this particular case, consistency follows (in part) from unbiasedness. As the size of N in-
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creases towards ∞ while all other factors remain constant, the probability of an estimate arbitrarily

close to the estimator’s expected value is equal to 1. Unbiasedness ensures that the expected value

of the estimator is equal to the true value of the estimand. Therefore, as the size of the study pop-

ulation grows towards ∞, the estimator produces a value arbitrarily close to the truth (not just to

the estimator’s expected value) with a probability of 1. Both the unbiasedness and consistency of

the Difference-in-Means estimator, moreover, arise solely from the research design. Even though

the distribution of the estimator starts to look more and more normal as the size of the study

population increases to ∞, we made no such distributional assumptions to show the estimator’s

unbiasedness and consistency.

Precision

While unbiased and consistent estimators are desirable, such estimators may yield estimates far

from the truth, with high probability in actual experiments with fixed study populations. One

estimator is more precise that another estimator for a given study design if it produces estimates

that are closer to the truth on average. In other words, a ‘good’ estimator also has a low variance;

in our case, a more precise estimator than the Difference-in-Means estimator would make the 20

possible estimates in Table 41.2 closer to the true mean causal effect, on average. We now consider

first the factors that make the Difference-in-Means estimator produce guesses with lower expected

distance from the true mean causal effect and second the procedure one can use to conservatively

estimate the variance of the Difference-in-Means estimator.

Neyman (1923) derived an exact analytic expression for the variance of the Difference-in-Means

estimator based solely on the research design of a randomized experiment, as follows:

(6) σ2
ˆ̄τ =

1

N − 1

(
ntσ

2
yc

nc

+
ncσ

2
yt

nt

+ 2σyc,yt

)
,

where σ2
yc is the variance of control potential outcomes, σ2

yt is the variance of treated potential

outcomes and σyc,yt is the covariance of control and treated potential outcomes.

Equation (6) suggests that one can increase the precision of the Difference-in-Means estimator

(i.e., reduce the estimator’s variance) by increasing the number of treatment units and/or the
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number of control units. Precision can also be increased by decreasing the variances of treatment,

σ2
yt , and control, σ2

yc , potential outcomes. For a simple and clear account of the factors that increase

precision, see Gerber and Green (2012, section 3.2).

A standard design choice that researchers can make to increase precision is blocking. That is,

a researcher can first construct blocks that are similar in terms of covariates related to potential

outcomes and second assign units to study conditions within blocks. Blocked assignment works

by excluding assignments that yield estimates far from the true mean effect, on average. To see

this point, we return to the example in Table 41.1 and introduce x, which is a vector of baseline

covariates, xi, for all i ∈ {1, . . . , N} units. The vector x is a fixed quantity that is measured for

all units prior to assignment; hence, x cannot change as a function of whichever assignment is

realized.
yc yt τττ x
20 22 2 1
8 12 4 1
11 11 0 0
10 15 5 1
14 18 4 1
1 4 3 0

Table 41.4: True values of yc, yt, τττ and the baseline covariate x

From Table 41.4, we can see that x is related to both yc and yt. The treatment potential

outcomes are greater, on average, among units whose baseline covariate values are equal to 1

compared to units whose baseline covariate values are equal to 0. The same is true for control

potential outcomes. If the researcher puts units whose covariate values are equal to 1 in one block

and units whose covariate values are equal to 0 in another, and then assigns half of the units to

treatment and control within blocks, the set of possible assignments, Ωb, would be as follows:

(7) Ωb =





1
1
1
0
0
0


,



1
1
0
0
0
1


, . . . ,



0
0
1
1
1
0


,



0
0
0
1
1
1




.

The set Ωb above has only 12 possible assignments as opposed to the 20 possible assignments
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in Equation (2) under complete random assignment without blocks. In particular, the assignments

of z2, z3, z7, z8, z13, z14, z18, z19 ∈ Ω are excluded from Ωb.

Figure 41.2 shows the eight estimates corresponding to the eight assignments that were included

in unblocked assignment but excluded in blocked assignment. On average, these eight estimates

are farther from the true mean effect than are the other 12 estimates. More concretely, the average

squared distance of the eight excluded estimates from the truth is 36.91667 and the same average

squared distance of the 12 included assignments is 18.12963. Hence, this blocked design increases

precision by reducing the probability (to 0) of estimates that are, on average, far from the truth

and by increasing the probability of estimates that are, on average, closer to the truth.5
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Figure 41.2: Distribution of Difference-in-Means estimates under (1) unblocked and (b) blocked assign-
ment

Thus far, we have focused on design choices that can decrease the variance of the Difference-in-
5Note that, if treatment assignment probabilities differ across blocks (but are uniform within blocks), then

the standard Difference-in-Means estimator may be biased. In such cases, an unbiased estimator would be the
Difference-in-Means estimator that generates an estimate within each block and subsequently weights each block-
specific estimate by the proportion of units in that block.
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Means estimator. But, note that the variance of the Difference-in-Means estimator is, like the true

mean causal effect, a fixed, unobservable quantity. As we can see from Equation (6), the variance

of the Difference-in-Means estimator depends on the variance of treatment and control potential

outcomes as well as their covariance, none of which can be directly observed. We need a ‘good’

procedure by which we can estimate the variance of the Difference-in-Means estimator if we are

to reasonably infer its precision. We will use such a variance estimator in the context not only of

evaluating estimators but also hypothesis testing.

One can unbiasedly estimate two of the three unknown quantities in Equation (6). Following

Cochran (1977), unbiased estimators of σ2
yc and σ2

yt , respectively, are: σ̂2
yc =

(
N−1

N(nc−1)

) N∑
i:Zi=0

(
yc,i − µ̂yc

)2
and σ̂2

yt =
(

N−1
N(nt−1)

) N∑
i:Zi=1

(
yt,i − µ̂yt

)2, where µ̂yc =
(

1
nc

) N∑
i=1

(1− Zi) yc,i and µ̂yt =
(

1
nt

)
Ziyt,i. We

cannot write an unbiased estimator for σyc,yt since no two potential outcomes for any unit can be

jointly observed. Neyman (1923) noted, however, that one could use a conservative procedure for

estimating the quantity in Equation (6) by assuming the largest possible value of 2σyc,yt , which,

by the Cauchy–Schwarz inequality and the AM–GM inequality (i.e., inequality of arithmetic and

geometric means), is σ2
yc + σ2

yt .

After substituting σ2
yc +σ2

yt for 2σyc,yt , the analytic expression for the variance of the Difference-

in-Means estimator (assuming 2σyc,yt = σ2
yc + σ2

yt) is

1

N − 1

(
ntσ

2
yc

nc

+
ncσ

2
yt

nt

+ σ2
yc + σ2

yt

)
,

which can be simplified to

(8) N

N − 1

(
σ2
yc

nc

+
σ2
yt

nt

)
.

Now there are only two unknown quantities in Equation (8), each of which can be unbiasedly

estimated. Hence, one can now unbiasedly estimate the quantity in (8) via the conservative
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variance estimator of

(9) σ̂2
ˆ̄τ =

N

N − 1

(
σ̂2
yc

nc

+
σ̂2
yt

nt

)
.

This estimator is conservative because, since it unbiasedly estimates the quantity in (8), its ex-

pected value is equal to or greater than the true variance of the estimator given in (6).6

Thus far, we have explained the role that research design – i.e., the probability distribution on

the set of assignments, Ω – plays in determining whether estimators are unbiased, consistent and

precise. We have also explained how one can infer the variance of an estimator via a conservative

procedure. We have used a simple example of complete uniform assignment to illustrate these

points; yet an estimator that is unbiased, consistent and/or relatively precise in this design may not

be so in another design. For example, the Difference-in-Means estimator is not necessarily unbiased

when there is a non-uniform probability distribution on Ω; however, the Horvitz–Thompson (i.e.,

inverse probability weighted) estimator (Horvitz and Thompson, 1952) is unbiased in such a design

(see Aronow and Middleton, 2013). Such design-based inference differs from model-based inferences

in that the former remains reliable without the need to impose a probability model on potential

outcomes or to model the functional form (e.g., a linear model) that links the treatment variable

to potential outcomes. The only probability model in design-based inference is the assignment

process itself, which, in the case of a randomized experiment, is known to be the true model of the

data-generating process.

Hypothesis Testing
Focusing on τ̄ engages with the fundamental problem of causal inference by aggregation across

units in the study and ˆ̄τ can be shown to be an unbiased, consistent and, depending on the study

design, relatively precise estimator. An alternative approach begins with claims about causal effects

rather than guesses about them, stating hypotheses about τ̄ or even about individual effects, τi.

This approach then tests those claims, and so the procedures that we will assess in this section
6Recent work has derived a consistent estimator for an upper bound on the term 2σyc,yt that is always less than

or equal to σ2
yc

+ σ2
yt

(Aronow et al., 2014). Such an estimator enables researchers to more precisely estimate the
the variance of the Difference-in-Means estimator and, as we will discuss later, increase the power of hypothesis
tests about the mean causal effect.
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are properties of tests rather than of estimators. A researcher who performs a hypothesis test for

causal inference first states a null hypothesis about a relationship between unobserved potential

outcomes and a (usually composite) alternative hypothesis, which we will define more precisely

below. The researcher can then assess the probability that the research design generates data

more extreme than the observed data under the null hypothesis, where the data are summarized

via a test statistic that maps the data – the observed outcome, perhaps adjusted to reflect the

implications of the hypothesis, and treatment assignment – to a single number. For example,

t(Z,Y) could be

 1
N∑
i=1

Zi

 N∑
i=1

ZiYi−

 1
N∑
i=1

(1−Zi)

 N∑
i=1

(1− Zi)Yi, which is the same formula that we

labeled ˆ̄τ in Equation (3) but, in the context of hypothesis testing, is not an estimator but a data

summary. We call the probability of a test statistic more extreme than the observed test statistic a

probability-value or p-value. Typically, when the p-value is lower than a pre-specified ‘significance

level’ of the test, which we denote by α ∈ (0, 1), a researcher rejects the null hypothesis, meaning

that the researcher declares that the observed data are not consistent with the hypothesis. When

the p-value is greater than or equal to the significance level of the test, the researcher fails to reject

the null hypothesis – meaning that the researcher declares that there is not enough information to

state that the observed data are inconsistent with the hypothesized state of the world. Sometimes,

we talk about hypothesis testing as an attempt to distinguish signal from noise; a high p-value

tells us that we cannot distinguish signal from noise, and a low p-values tells us that we can do so.

Hypothesis tests are subject to at least two types of errors: first, one could reject the null

hypothesis when it is true (a type I error) or, second, fail to reject the null hypothesis when it is

false (a type II error). Two features of hypothesis tests related to these two potential errors are

the α size of the test and the power of the test. We now define the α size (distinct from the α

level) and power-of-hypothesis tests.

A test’s α level is, in the words of Rosenbaum (2010), that test’s ‘promise’ that the probability

of a Type I error (i.e., the probability of a p-value that is less than α when the null hypothesis is

true) is less than or equal to the α level. The test’s α size, on the other hand, is the test’s true

probability of a Type I error, which, in general, can be greater than, equal to or less than the

α level ‘promised’ by the test. In contrast to the α level and size of a test, a test’s power is the
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probability of a p-value that is less than the α level when the null hypothesis is false. In other

words, power is 1 minus the Type II error probability; hence, as the power of a test increases, the

Type II error probability decreases.

In the subsections to follow, we first define ‘good’ properties of hypothesis tests. We then de-

scribe tests of causal hypotheses in two distinct traditions traceable to Fisher (1935) (subsequently

developed most extensively by Rosenbaum, 2002, 2010), and Neyman and Pearson (1933). We

then explain the role that research design plays in justifying whether tests in either of these two

traditions have good properties.

What Makes a Hypothesis Test a ‘Good’ Test?

We have already discussed three properties of good estimators – namely, unbiasedness, consistency

and precision – but what makes a test of a null hypothesis relative to an alternative hypothesis

a ‘good’ test? Just as we did for estimation, we describe ‘good’ features of hypothesis tests in

the context of a fixed, finite population and in the context of a hypothetical scenario in which a

study’s size increases towards ∞ by increasing the number of copies of the study. The first two

‘good’ properties (a Type I error probability less than the α level and an unbiased test) refer to the

former context, and the third property (a consistent test) refers to the latter context. Informally,

a good hypothesis test should rarely mislead us: it should rarely encourage us to declare that we

have discovered a signal in the noise when no signal exists and it should often find signals when

they do exist.

Regardless of the size of a given study population, a hypothesis test first ought to control its α

size (true Type I error probability) such that it is less than or equal to the test’s α level. Second,

a hypothesis test ought to be an unbiased test (not to be confused with an unbiased estimator),

i.e., the probability of rejecting the null hypothesis when it is false and the alternative hypothesis

is true should be at least as great as the probability of rejecting the null hypothesis when it is true

and the alternative hypothesis is false (see Lehmann and Romano, 2005, chapter 4). Intuitively,

we want to reject something that is false and we want to not reject something that is true. A test

that leads us to reject true nulls with greater probability than we reject false nulls does not yield

inferences that track the true causal effect. A good hypothesis test ought to be an unbiased test
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in this sense.

Turning now to the asymptotic context described in the section ‘An Illustrative Example’, a

hypothesis test ought to be a consistent test (not the same as a consistent estimator); that is, as

the size of the study population increases asymptotically while all other relevant factors remain

constant, the probability of rejecting the null hypothesis when it is false and the alternative is

true should tend to 1 (see Lehmann and Romano, 2005, chapter 11). We now show the role that

research design plays in enabling ‘good’ hypothesis tests in two different design-based traditions:

Fisherian (Fisher, 1935) and Neymanian (Neyman and Pearson, 1933).

Fisherian Hypothesis Testing

Hypothesis testing in the tradition of Fisher (1935), later developed most extensively by Rosen-

baum (2002, 2010), assesses the consistency of the observed data with a null hypothesis vis-a-

vis an alternative hypothesis. A strong null hypothesis,7 which we denote by τττ 0, postulates

an individual treatment effect for all i ∈ {1, . . . , N} units in a given study population. For

example, one strong null hypothesis is τττ ′0 =
[
5 5 · · · 5 5

]
and another might be τττ ′0 =[

0.5 −10 · · · 200 −74.25
]
. The strong null hypothesis of no effect (which we henceforth

refer to as ‘the strong null of no effect’) specifically postulates that τi = 0 for all i ∈ {1, . . . , N}

units – i.e., that τττ ′0 =
[
0 0 · · · 0 0

]
.

The consistency of the observed data with a strong null hypothesis vis-a-vis an alternative is

typically assessed via p-values. To reiterate, a p-value is the probability of a test statistic at least as

extreme as the observed test statistic from the perspective of the null hypothesis: as we will show

below, the hypothetical world of the null generates, along with the known research design, the

probability distribution that we compare against our single observed test statistic. In the context

of Fisherian hypothesis tests, we can formally represent upper (pu), lower (pl) and two-sided (pt)
7We use the term ‘strong’ instead of ‘sharp,’ as used by Fisher (1935), to contrast strong null hypotheses with

weak null hypotheses which we discuss below.
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p-values as follows:

pu =

|Ω|∑
m=1

1

[
t
(
zm,y0m

)
≥ T

]
Pr (Z = zm)

pl =

|Ω|∑
m=1

1

[
t
(
zm,y0m

)
≤ T

]
Pr (Z = zm)

pt = min
{
1, 2min {pu, pl}

}
,

(10)

where the index m ∈
{
1, . . . , |Ω|

}
runs over all possible assignments in the set of assignments Ω, 1

is an indicator function that is 1 if the argument [·] is true and 0 if false, t
(
zm,y0,m

)
is the null test

statistic (using y0,m to refer to the vector of observed outcomes for the mth assignment implied

by the null hypothesis, H0) and T is the observed test statistic.8

To provide an illustration of Fisherian p-values, we return to the example in Table 41.1 and

imagine that the assignment z′
8 =

[
1 0 0 1 1 0

]
happened to be the one randomly selected.

In this case, the realization of data would be as follows.
z8 yc yt y8

1 ? 22 22
0 8 ? 8
0 11 ? 11
1 ? 15 15
1 ? 18 18
0 1 ? 1

Table 41.5: Realization of Data if z8 were the randomly drawn assignment

If the researcher uses the Difference-in-Means test statistic to provide a single, numerical sum-

mary of the observed data in Table 41.5, then the observed test statistic would be t(z,y) = 11.6667.

Let’s assume that the researcher wants to assess the consistency of this observed test statistic with

the strong null of no effect – i.e., that τi = 0 for all i – relative to the alternative hypothesis of a

positive effect – i.e., that τi is nonnegative for all i and positive for at least one i.

Potential outcomes are only partially observed, but the researcher can ‘fill in’ the missing
8The expression for a two-sided p-value, pt = min

{
1, 2min {pu, pl}

}
, comes from Rosenbaum (2010, 33) who

states that ‘[i]n general, if you want a two-sided P-value, compute both one-sided P-values, double the smaller one,
and take the minimum of this value and 1.’ The rationale is that doubling a one-sided p-value compensates for, in
essence, testing twice.
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potential outcomes following the strong null hypothesis H0 : yt,i = yc,i for all i. Below, we

can also show what this hypothesis implies for the observed outcomes yi, recalling that yi =

Ziyt,i + (1− Zi)yc,i and writing yc0,i to mean ‘value of yc,i under H0’:

yc0,i = yi − ziτ0i

yt0,i = yi + (1− zi) τ0i ,

(11)

which in the case of the strong null of no effect implies that units’ null potential outcomes and

observed outcomes are as they appear in Table 41.6.
z8 yc08 yt08 y8

1 22 22 22
0 8 8 8
0 11 11 11
1 15 15 15
1 18 18 18
0 1 1 1

Table 41.6: Null potential outcomes if z8 were the realized assignment and under the hypothesis that
yt,i = yc,i for all i

Considering the strong null of no effect as a model of unobserved causal relationships for the sake

of argument, the researcher knows exactly what all other possible realizations of data would look

like under each possible assignment in Ω. Hence, the researcher can summarize all other possible

realizations of data under the null with the same Difference-in-Means test statistic – generating a

probability distribution of those null test statistics – and then calculate the probability of a null

test statistic greater than or equal to the observed test statistic of 11.6667 (see Figure 41.3).
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Figure 41.3: Distribution of Difference-in-Means test statistic under strong null of no effect when z8 is
the realized assignment

In this case, the upper p-value – pu from Equation (10) – is 0.05. If the value of α had been

pre-set to a level greater than 0.05, then the researcher would reject the null. Table 41.1 shows

that the strong null of no effect is false (yt,i ̸= yc,i for all i) and the alternative of a positive effect

is true; hence, this particular choice to reject the strong null of no effect relative to the alternative

of a positive effect happened to be a good one.

To assess whether the hypothesis-testing procedure is a good one overall, we want to establish

that the test (1) has a true Type I error probability less than the α level, (2) is unbiased and (3)

is consistent. We will now illustrate these three properties in turn.

To see this point, we return to the example given in Table 41.1, where the true vector of

individual causal effects is τττ ′ =
[
2 4 0 5 4 3

]
, and Table 41.2 describes the 20 possible

realizations of data. When the null hypothesis, τττ 0, is false, the potential outcomes implied by the

null hypothesis vary depending on which data are realized. However, when the null hypothesis, τττ 0,
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is true, i.e., when τττ 0 = τττ , the potential outcomes implied by the null hypothesis are fixed across

all possible realizations of data, as shown by Table 41.7.
z1 yc0 yt0 y1

1 20 22 22
1 8 12 12
1 11 11 11
0 10 15 10
0 14 18 14
0 1 4 1

z2 yc0 yt0 y2

1 20 22 22
1 8 12 12
0 11 11 11
1 10 15 15
0 14 18 14
0 1 4 1

· · ·

z19 yc0 yt0 y19

0 20 22 20
0 8 12 8
1 11 11 11
0 10 15 10
1 14 18 18
1 1 4 4

z20 yc0 yt0 y20

0 20 22 20
0 8 12 8
0 11 11 11
1 10 15 15
1 14 18 18
1 1 4 4

Table 41.7: Null Potential Outcomes for all Possible Realizations of Data when the Null Hypothesis is
True. The observed outcomes column, yj = yc0 + zjτττ ′.

If we set the significance level of the test to α = 0.10, then it is true by definition that the

probability that an observed test statistic lies in the lower tail of its distribution is less than or

equal to 0.10, and the same is true for the probability that an observed test statistic lies in the

upper tail of its distribution. Figure 41.4 shows the distribution of this test statistic, in which

both the lower and upper tails according to α = 0.10 are shaded in red.
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Figure 41.4: Distribution of observed test statistic. The upper and lower tails containing 10% of the
area under the curve are shaded in red.

Notice that no matter which of the 20 possible realizations of data is actually realized, the

null potential outcomes are identical to the true potential outcomes in Table 41.1, and hence each

of the 20 possible null distributions of the test statistic are identical to the distribution of the
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observed test statistic. Since all 20 possible null distributions are identical to the distribution of

the observed test statistic, the probability that an observed test statistic lies in one of the tails of

the null distribution must also be less than or equal to 0.10. This means that the probability of a

null test statistic that is more extreme than the observed test statistic must be less than or equal

to α.

Fisherian hypothesis tests possess the property that the Type I error probability is less than

or equal to the test’s α level. Yet such a property does not imply that the power of the test is

greater than the test’s Type I error probability (i.e., that the test is unbiased). To show that a

test is unbiased relative to a specific class of alternative hypotheses, we now need to more precisely

define the alternative to the null hypothesis.

In the previous sections, we referred to causal effects by the vector τττ , but now we define the

size of causal effects using the vectors of control and treatment potential outcomes: yc and yt,

respectively. More specifically, following Rosenbaum (2002), we define a treatment effect that is

‘larger’ than another treatment effect as follows:

Definition 1. One treatment effect (yc
∗,yt

∗) has a larger effect than another treatment effect

(yc,yt) if and only if y∗t,i ≥ yt,i and y∗c,i ≤ yc,i for all i ∈ {1, . . . , N} units, where yt
∗ ̸= yt or

yc
∗ ̸= yc.

Such an ordering of causal effects is consistent with many models of treatment effects, such as

additive, multiplicative, tobit and dilated effects (Rosenbaum, 1999, 2002, 2010), not solely with

the model of a constant, additive effect that we use here.

We now use this formal definition of ‘larger effect’ in terms of potential outcomes to define a

desirable property of a test statistic: ‘larger’ effects yield test statistic values greater than those

produced by ‘smaller’ effects. Rosenbaum (2002, chapter 2) shows that an ‘effect-increasing’ test

statistic with respect to two possible realizations of data, (z,y) and (z,y∗), satisfies this property.

Following Rosenbaum (2002), we define an effect-increasing test statistic as follows:

Definition 2. A test statistic, t (·, ·), is effect increasing when t (z,y) ≤ t (z,y∗) whenever yi ≤ y∗i

for all i ∈ {1, . . . , N} : zi = 1 and y∗i ≤ yi for all i ∈ {1, . . . , N} : zi = 0.

26



An effect-increasing test statistic ensures that, when the null hypothesis is false and the alter-

native of a larger effect is true, each possible realization of data yields a test statistic value that

is greater than or equal to the corresponding test statistic value when the null hypothesis is true

and the alternative of a larger effect is false. To understand this property, consider the following

example in Table 41.8 of two possible causal effects, (yc,yt) and (yc
∗,yt

∗), in which the former is

a null effect and the latter is a larger, positive causal effect (see definition 1).
yc yt

20 20
8 8
11 11
10 10
14 14
1 1

yc
∗ yt

∗

20 22
3 12
10 11
10 15
9 19
1 4

Table 41.8: No-Effects, (yc,yt), and Positive-Effects, (yc∗,yt∗)

Regardless of whichever three out of the six units are assigned to treatment in z, the larger

causal effect, (yc
∗,yt

∗), will always yield a value of the observed outcome for all treated units that

is greater than or equal to the outcome we would see with the same z in the no-causal-effect state,

and we would also see a value of for all control units that is less than or equal to what we would

see in the no-causal-effect state. Table 41.9 shows that an effect-increasing test statistic ensures

that the observed test statistic of a larger effect is always greater than or equal to the observed

test statistic of a smaller effect.
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No-Effects Positive-Effects
Z t (Z,Y) t (Z,Y∗)

z1 4.67 8.33
z2 4.00 9.67
z3 6.67 10.67
z4 -2.00 3.00
z5 6.00 11.67
z6 8.67 12.67
z7 0.00 5.00
z8 8.00 14.00
z9 -0.67 6.33
z10 2.00 7.33
z11 -2.00 2.67
z12 0.67 3.67
z13 -8.00 -4.00
z14 0.00 5.00
z15 -8.67 -2.67
z16 -6.00 -1.67
z17 2.00 7.00
z18 -6.67 -0.67
z19 -4.00 0.33
z20 -4.67 1.67

Table 41.9: Observed mean-difference test statistics under all possible assignments for both a no-effects
and positive-effects true causal effect.

In addition to the property that increasing causal effects map monotonically onto increasing

test statistics, we also want the p-values for tests of the null hypothesis when the null is false

and the alternative is true to be smaller compared to the p-values when the null is true and the

alternative is false. An effect-increasing test statistic also suffices for this property (for a formal

proof, see Rosenbaum, 2002, chapter 2).

Table 41.10 shows that for all z1, . . . , z20, the p-value of the strong null of no effect when the

positive effect, (yc
∗,yt

∗), is true is less than or equal to the strong null’s p-value when no-effect,

(yc,yt), is true.
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No-Effects Positive-Effects
Z P-Value for (yc,yt) P-Value for (yc

∗,yt
∗)

z1 0.25 0.20
z2 0.30 0.10
z3 0.15 0.05
z4 0.70 0.40
z5 0.20 0.10
z6 0.05 0.05
z7 0.55 0.40
z8 0.10 0.05
z9 0.60 0.35
z10 0.40 0.20
z11 0.70 0.45
z12 0.45 0.30
z13 0.95 0.90
z14 0.55 0.30
z15 1.00 0.80
z16 0.85 0.65
z17 0.40 0.25
z18 0.90 0.80
z19 0.75 0.65
z20 0.80 0.60

Table 41.10: Comparing p-values for tests of the strong null of no effect when no effects are true ((yc,yt))
and false ((yc∗,yt∗)).

We have just shown that Fisherian tests using effect-increasing test statistics are unbiased: they

provide more evidence against false claims than against true claims. In addition to being unbiased,

we would also like our tests to be consistent, i.e., as the size of the study population grows towards

∞, while other factors remain constant, the power of the test tends to 1. Returning to the example

in Table 41.1, notice that the probability of a p-value less than α increases along the sequence of

finite populations of increasing size, given in Table 41.3. For example, with an α level of α = 0.10,

Figure 41.5 shows that the probability of a p-value less than α = 0.10 grows greater and greater.
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Figure 41.5: Distribution of Fisherian p-values for test of strong null of no effect under all realizations of
data as the size of the experimental pool grows from one copy of the study, h = 1 (n = 6));
to two copies of the study, h = 2 (n = 12); to three copies of the study, h = 3 (n = 18).

Figure 41.5 shows that when the study population size grows from 6 to 12 and 18 units while

all other factors are held constant, the power increases from 0.15 to roughly 0.2933 and 0.3741,

respectively. As the population size increases along the sequence given in Table 41.3, the power of

the test of the strong null of no effect will tend to 1. In other words, as we draw upon more and

more data, we reject a false null with greater and greater probability.

We used the Difference-in-Means estimator as a test statistic for our example data in order

to demonstrate the properties of Fisherian hypothesis tests in randomized experiments. However,

we could have also used rank-based test statistics, standardized mean differences or many other

functions of treatment and outcomes. All of those test statistics, like the Difference-in-Means test

statistic, are effect-increasing. In fact, one of the challenges of Fisherian testing is its flexibility

in terms of test statistics. We do not engage with those decisions here but encourage interested

readers to see (Rosenbaum, 2010, chapter 2) for some discussion on using this flexibility to assess
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substantively interesting hypotheses about pareto optimal causal effects, as well as Caughey et al.

(2018) and Bowers et al. (2013, 2016) for examples on the propagation of causal effects on networks.

Hypothesis Testing in the Neymanian Tradition

While Fisherian tests allow the use of many different kinds of test statistics, Neymanian hypothesis

tests are much more closely related to the estimation of mean causal effects (see the third section).

In any given study, one can observe only a single estimate. However, a researcher can postulate

(provisionally, for the sake of argument) a weak null hypothesis, H0 : τ̄ = τ̄0, relative to some

alternative hypothesis, such as Ha : τ̄ > τ̄0, and subsequently assess the probability of an estimate

more extreme than the estimate the researcher actually observed if the weak null hypothesis were

true. Such Neymanian hypothesis tests differ from Fisherian tests in several fundamental ways.

Neymanian hypothesis tests (1) hypothesize about the mean causal effect, not the individual causal

effect for each unit in the study, (2) require that the Difference-in-Means estimator be unbiased

such that a hypothesis about the mean causal effect implies the same value for the mean (i.e.,

expected value) of the estimator, (3) require that the researcher estimate the variance of the

Difference-in-Means estimator (recall that the distribution of the test statistic in the Fisherian

test is known under random assignment and a strong null hypothesis) and (4) draws upon the

finite population central limit theorem (Erdös and Rényi, 1959; Hájek, 1960; Li and Ding, 2017),

which implies that the product of
√
N multiplied by the difference between the estimator and its

expected value converges to a normal distribution with mean equal to 0 and variance equal to σ2
ˆ̄τ
,

which, due to Slutsky’s theorem, can be equivalently stated as
ˆ̄τ−E[ˆ̄τ]√

σ2
ˆ̄τ

converges in distribution to

a standard normal (i.e., normal distribution with mean 0 and variance equal to 1).
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We can see points (1)–(4) by looking at the common expressions for Neymanian p-values:

pu = 1− Φ

 ˆ̄τ − τ̄0√
σ̂2
ˆ̄τ


pl = Φ

 ˆ̄τ − τ̄0√
σ̂2
ˆ̄τ



pt = 2

1− Φ

 |ˆ̄τ − τ̄0|√
σ̂2
ˆ̄τ


 ,

(12)

where ˆ̄τ is the familiar Difference-in-Means estimator (from the third section) now interpreted as

a test statistic, not an estimator, σ̂2
ˆ̄τ

is the conservative variance estimator (also from the third

section) now used to describe the reference distribution for a null hypothesis rather than the

precision of an estimator, τ̄0 is a weak null hypothesis and Φ (·) is the standard normal cumulative

distribution function (CDF).

The expressions in Equation (12) return the probability of an estimate at least as extreme as

the observed estimate if the weak null hypothesis, τ̄0, were true. Notice, though, that the weak

null hypothesis, τ̄0, is technically a claim about the mean of the Difference-in-Means test statistic,

which we can denote by E0

[
ˆ̄τ
]
. However, because the Difference-in-Means estimator is unbiased,

its expected value is always equal to the mean causal effect; this is why we use τ̄0 in Equation (12)

rather than E0

[
ˆ̄τ
]
. Finally, note that the true variance of the Difference-in-Means test statistic is

unknown, but the normal CDF requires two arguments – a value for the mean and a value for the

variance – to assign a probability to estimates as least as extreme as the observed estimate. Rather

than postulate a hypothesis about the variance of the estimator, like one does for the mean of the

estimator, Neymanian tests use an estimate from the conservative variance estimator to calculate

a p-value via the standard normal CDF.

In many situations, we can easily justify the assumption that ˆ̄τ−τ̄0√
σ̂2
ˆ̄τ

is well approximated by a

normal distribution by appealing to the aforementioned finite population Central Limit Theorem

(CLT) and associated theory (see, e.g., Höglund, 1978). The Difference-in-Means test statistic
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scaled by
√
N is indeed asymptotically normal and the p-values in Equation (12) are all asymptot-

ically valid – i.e., as N grows towards ∞, the probability of a Type I error is less than or equal to

the α level of the test.

However, in small experiments in which the normal approximation is poor, tests of a weak

null hypothesis relative to an alternative may have either a Type I error probability greater than

the test’s α level (when the null is true) or low power (when the null is false). Table 41.5 and

Figure 41.3 demonstrate Neymanian p-values, in which the assignment z8 happened to be the one

randomly drawn by the researcher. In this example, the observed Difference-in-Means test statistic

is 11.6667 and the conservatively estimated variance is 12.8889. If we were to test the weak null

hypothesis of no effect, i.e., that τ̄0 = 0, against the alternative hypothesis that τ̄a > 0, then the

upper one-tailed p-value would be as follows:

1− Φ

(
11.6667− 0√

12.8889

) ≈ 0.0006,(13)

which yields a smaller p-value than the upper p-value we calculated via the Fisherian test of the

strong null of no effects (which was p = 0.05). Figure 41.6 illustrates all upper p-values for a test

of the weak null over all 20 possible realizations of data.
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Figure 41.6: Distribution of Neymanian p-values under all realizations of data

In this particular case in which the weak null hypothesis is false, we can see that the Neymanian

hypothesis test has high power. But in general, Neymanian tests can have bad properties in small

experiments, such as a Type I error probability greater than α. For example, imagine that the

weak null hypothesis of no effect were true as is depicted in Table 41.11 below:
yc yt τττ

22 22 0
8 8 0
11 11 0
15 15 0
18 18 0
1 1 0

Table 41.11: Values of yc, yt and τττ when weak null hypothesis is true

In this hypothetical experiment in which the weak null is true (and the strong null also happens

to be true but need not be), Figure 41.7 shows that for some α levels like α = 0.05, the type I

error probability is greater than the test’s α level (the black line is above the red line). For other
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α levels, the type I error probability is less than the α level (the black line is below the red line),

which makes the test at that level a conservative test. In short, although Neymanian hypothesis

tests are asymptotically valid, such tests (particularly in small experiments) may yield type I error

probabilities that do not fulfill the ‘promise’ made by a given α level.
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Figure 41.7: Distribution of Type I error probabilities for different α levels

An additional implication of the differences between Neymanian and Fisherian hypothesis tests

is that, although the former is consistent9, it is not necessarily unbiased in finite contexts, even

when the Difference-in-Means test statistic is well approximated by a normal distribution. For

intuition on this point, note that when the alternative of a larger effect is true and the null of no

effects is false, the Difference-in-Means test statistic will yield values that are systematically larger

than the values it would produce if the null of no mean effect were true – larger causal effects lead

to larger test statistic values. Yet the alternative of a larger effect could be such that when it is

true, the variance estimates are systematically larger than what the same variance estimates would
9We can see this property indirectly from Wu and Ding (2018) and Lin (2013).
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be if the null were true – e.g., if a positive mean causal effect is caused by a few outliers that react

strongly to treatment. Since the z-score scales the Difference-in-Means estimates by the variance

estimates, the systematically greater variance estimates when the alternative is true could yield

smaller z-scores (and hence larger p-values) compared to when the null is true. Hence, Neymanian

hypothesis tests of weak causal hypotheses are not necessarily unbiased in finite contexts, even

when the assumption of normality holds. For more on Fisherian versus Neymanian hypothesis

tests, see Ding (2017), as well as the discussion from Aronow and Offer-Westort (2017), Chung

(2017), Bailey (2017) and Loh et al. (2017).

Up to this point, we have discussed the role that research design plays in the quality of pro-

cedures for causal inference: estimation and testing. To simplify the exposition, we have been

referring to situations where the researcher completely controls and thus knows the research de-

sign. We now consider situations in which the researcher does not control or only partially controls

the research design.

Partially Controlled Research Designs: Noncompliance and Attrition
We refer to designs with imperfect compliance and/or attrition as partially controlled designs, in

that the researcher does control the probability distribution on the set of possible assignments

but does not control whether units actually comply with the assigned treatment or report their

outcomes. Causal inferences in such partially controlled designs often require more assumptions to

make causal inferences, which are typically defined no longer on the whole study population but a

specific stratum of units in the study.

Noncompliance

Noncompliance occurs when units who are assigned to receive treatment or control do not actually

receive it, where the random variable Di ∈ {0, 1} is an indicator variable for whether unit i has

received or not received the assigned treatment. We are often substantively interested in the causal

effect of actual receipt of treatment and not its mere assignment. Under complete uniform random

assignment, we have shown above that the probability Zi = 1 is identical for all i = 1, . . . , N units.

Yet, we’re interested in the causal effect of Di, and since Di is an outcome of Zi (i.e., measured

after Zi), the probability that Di = 1 is no longer identical for all units. Hence, a naive estimator
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of the difference in observed outcomes between those who did and did not receive the treatment

(i.e., the per-protocol estimator) is not necessarily unbiased.

Since whether or not units actually receive (or comply with) the treatment is an outcome

variable measured after assignment, we can define units’ compliance status in terms of their unob-

servable potential outcomes (Table 41.12).

zi = 0 zi = 1 Stratum
dc,i = 1 dt,i = 1 Always-Taker
dc,i = 0 dt,i = 1 Complier
dc,i = 1 dt,i = 0 Defier
dc,i = 0 dt,i = 0 Never-Taker

Table 41.12: Compliance Strata

Notice that the probability that Di = 1 for an Always Taker is 1 and the probability that

Di = 1 for a Never Taker is 0. The only types of units for which the probability that Di = 1

remain identical and on the interval (0, 1) are Compliers and Defiers.

Angrist et al. (1996) show that scholars can consistently estimate the mean causal effect among

Compliers under three further assumptions in addition to SUTVA and a uniform probability dis-

tribution on the set of assignments, Ω, which is sometimes referred to as the exogeneity of the

instrument, Z. These three assumptions, in addition to SUTVA and uniform random assignment,

are:

1. Exclusion restriction – i.e., the instrument affects the outcome only through the receipt of

treatment.

2. No Defiers – i.e., that there are no units for which dc,i = 1 and dt,i = 0.

3. At least one Complier – i.e., there exists at least one unit in the study for which dc,i = 0 and

dt,i = 1.

To see this point, note that one can write the mean causal effect as a sum of the causal effects

among the four strata (Always-Takers, Compliers, Defiers and Never-Takers), weighted by the

proportion of units in each stratum:

τ̄ = δATπAT + δCπC + δDπD + δNTπNT ,
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where δs, πs : s ∈ {AT,C,D,NT} represent the mean causal effect in each stratum and the

proportion of units in that stratum, respectively.

By the exclusion restriction assumption, the causal effect of Z on Y must be 0 for Always

Takers and Never Takers (i.e., δAT = 0 and δNT = 0). By the assumption of no Defiers, the

proportion of Defiers, πD, is 0. Hence, the mean causal effect among Compliers is

τ̄ = δCπC

τ̄

πC

= δC ,

i.e., the mean causal effect on all units scaled by the proportion of Compliers is equal to the mean

causal effect among Compliers.

We showed in the section on unbiasedness that under complete uniform random assignment,

the Difference-in-Means estimator is unbiased regardless of the distributions of potential outcomes.

Both Y and D are outcomes of Z; hence, the Difference-in-Means estimators of ˆ̄τ (Z,Y) and

ˆ̄τ (Z,D) unbiasedly estimate τ̄ and πC , respectively. The Wald (or IV) estimator (Wald, 1940),

which is also sometimes referred to as the Bloom estimator (Bloom, 1984) or the CACE (Complier

Average Causal Effect) estimator (Gerber and Green, 2012), is defined as
ˆ̄τ(Z,Y)
ˆ̄τ(Z,D)

. In short, it is the

ratio of these two unbiased estimators. This ratio estimator consistently, though not necessarily

unbiasedly, estimates τ̄
πC

(see Angrist and Pischke, 2008, chapters 4.6 and 4.7).

A design-based test of the hypothesis of no mean causal effect among Compliers is difficult due

to the absence of an analytic expression for the variance of the CACE ratio estimator (for more

on this topic, see Imbens and Rosenbaum, 2005; Kang et al., 2018). On the other hand, tests of

the null hypothesis that the causal effect is 0 for all Compliers is relatively straightforward.

The null hypothesis of no causal effect among Compliers implies the strong null of no effect

under the assumptions of the exclusion restriction and no Defiers. Since these two assumptions

jointly imply that the individual causal effect of assignment is 0 for all Always Takers and Never

Takers, and that there are no Defiers, then no causal effect among Compliers implies no causal effect

among all units. For example, let’s imagine that (like in Table 41.5) z8 was the assignment that

the researcher happened to randomly draw, except that now we observe the following imperfect
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compliance, as shown in Table 41.13:
z8 yc yt y8 d8 dc dt

1 ? 22 22 0 ? 0
0 8 ? 8 0 0 ?
0 11 ? 11 0 0 ?
1 ? 15 15 1 ? 1
1 ? 18 18 0 ? 0
0 1 ? 1 1 1 ?

Table 41.13: Realization of Data if z8 were the randomly drawn assignment

We know that if dt,i = 0, then, by the no-Defiers assumption, that unit must be a Never Taker,

and if dc,i = 1, then, by the same assumption, that unit must be an Always Taker. We don’t

know, however, whether treated units for which dt = 1 are Compliers or Always Takers, and we

don’t know whether control units for which dc = 0 are Compliers or Never Takers. Yet under the

null hypothesis of no causal effect among Compliers, the individual causal effect is 0 regardless of

whether a given unit is a Complier, Always Taker or Never Taker. Hence, we can fill in missing

potential outcomes without knowing those units’ compliance strata, as follows in Table 41.14.
z8 yc yt y8 d8 dc dt

1 22 22 22 0 0 0
0 8 8 8 0 0 ?
0 11 11 11 0 0 ?
1 15 15 15 1 ? 1
1 18 18 18 0 0 0
0 1 1 1 1 1 1

Table 41.14: Potential outcome under strong null of no effect if z8 were realized assignment

One can now use an effect-increasing test statistic, such as the Difference-in-Means test statistic,

to test the hypothesis of no Complier causal effect against either the alternative of a positive

Complier causal effect or a negative Complier causal effect. Hansen and Bowers (2009) present an

application of this idea in the context of the one-sided compliance in a cluster-randomized get-out-

the-vote campaign with a binary outcome, replacing what would be a complex two-stage logistic

multilevel model with a relatively simple Fisherian hypothesis test. Imbens and Rosenbaum (2005)

show how the Fisherian approach produces valid confidence intervals, where the Neyman-style

approach using two-stage least squares fails to control the false positive rate when the instrument

is weak (i.e., there are few Compliers).

Under the assumptions of the exclusion restriction and no Defiers, we do not need to know

which units are Compliers in order to assert the hypothesis of no Complier causal effect. However,
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if one were to posit a hypothesis other than no Complier causal effect, one would also need to

posit a hypothesis about which units are Compliers and which are not. Hypothesis testing with

imperfect compliance is therefore more complicated when testing hypotheses other than that of

no Complier causal effect (for more on Fisherian approaches to instrumental variable analysis, see

Kang et al., 2018; Rosenbaum, 1996, among others).

Attrition or Missing Outcomes

Our second step away from the ideal case of complete control over the research design is to allow for

the possibility of missing outcomes. Let rt,i be an indicator, i.e., rt,i ∈ {0, 1}, for whether subject

i would respond to an attempt to measure an outcome, and let rc,i ∈ {0, 1} be an indicator for

whether subject i would respond if assigned to control. We can represent whether an individual’s

outcomes are missing or not, based on Equation (14):

(14) Yi =


yc,i + [yt,i − yc,i]Zi if Ri = 1

NA if Ri = 0,

where Ri = Zirt,i + (1− Zi) rc,i.

From Equation (14), we can see that if Ri = 1, then the researcher will observe yc,i for unit i

if Zi = 0 and yt,i for unit i if Zi = 1. By contrast, if Ri = 0, then Yi will be unobserved – i.e., NA.

We can define four distinct strata of subjects (see Table 41.15) with regard to attrition in order

to help us understand how attrition can affect the properties of estimators and hypothesis tests.

Just as we focused on a subgroup of units in the case of uncontrolled compliance, we can only infer

the causal effects on certain subgroups when outcomes are missing (even when assignments are

randomized).

zi = 0 zi = 1 Stratum
rci = 1 rti = 1 Always Reporter
rci = 0 rti = 1 If Treated Reporter
rci = 1 rti = 0 If Untreated Reporter
rci = 0 rti = 0 Never Reporter

Table 41.15: Attrition Strata

40



In the context of attrition, can we define a set of assumptions, as we did under imperfect

compliance, in which estimators and tests satisfy the properties they should on some subset of the

experimental data? It turns out that we can only do so if the question of whether a unit attrits

or not is independent of treatment assignment. Without further assumptions, we know only that

the random variable Ri is independent of the random variable Zi among only Always Reporters

and Never Reporters.10 Therefore, if we assume that all experimental units belong to one of these

two types, then our estimators and tests maintain the properties they should among the set of

Always Reporters.11 (We cannot observe outcomes for Never Reporters and hence cannot estimate

or test hypotheses about causal effects on units that are Never Reporters.) On this set of Always

Reporters, one can estimate causal effects and test strong or weak causal hypotheses, as we did

above.

Uncontrolled Research Designs: Observational Studies
In this section, we finally relax the assumption that the researcher has control over how the treat-

ment variable is assigned. The key distinction between experimental and observational studies

is that in a randomized experiment, the researcher knows the probabilities with which units are

assigned to treatment and control conditions; however, in an observational study, the researcher

observes units only after they have selected into study conditions with unknown probabilities.

How, then, is one to generate statistical inferences using estimators and tests focusing on causal

effects when the probability distribution on the set of assignments, Ω, is unknown? A common

design-based approach to this problem is to define units’ treatment assignment probabilities as an

unknown function of a set of baseline covariates. In the ideal (and often unattainable) case, by

appropriate conditioning on these baseline covariates, the researcher can estimate and test hypothe-

ses about causal effects via procedures that meet the desirable properties described at the outset

of this chapter. Much of the work on observational studies emphasizes appropriate conditioning
10Note that Ri is independent of Zi if and only if the probability that Ri takes on any value in its sample space

does not vary conditional on any value that Zi takes on in its sample space—i.e., that Pr
(
Ri = 1 | Zi = 1

)
=

Pr
(
Ri = 1 | Zi = 0

)
and Pr

(
Ri = 0 | Zi = 1

)
= Pr

(
Ri = 0 | Zi = 0

)
. The only two types of subjects who satisfy

such independence are Always Reporters and Never Reporters.
11Other approaches to estimation and testing relax the assumption that outcome missingness is independent of

treatment assignment and devise procedures that bound inferences about treatment effects under best- or worst-
case scenarios, e.g., ‘trimming bounds’ (Lee, 2009) and ‘extreme value bounds’ (Manski, 1990).
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on baseline covariates, as well as methods to diagnose the success of such conditioning strategies

(e.g., Hansen and Bowers, 2008; Hartman and Hidalgo, 2018, among others). Realistically, the

design-based approach in observational studies might be called an ‘as-if-randomized’ approach, e.g.,

a researcher might make choices about comparison groups such that within a group, treatment

selection appears random.

The model of an observational study states that units are individually assigned to treatment or

control by N independent (but not necessarily identically distributed) coin tosses. More specifically,

for all i ∈ {1, . . . , N} units, we let Pr (Zi = 1) be equal to λ (xi), where λ (·) is an unknown function

and xi is unit i’s fixed vector of baseline covariate values. Even if we don’t know λ (·), if xi = xj for

any two units i and j ̸= i, then it follows that Pr (Zi = 1) = Pr
(
Zj = 1

)
. Of course, we still don’t

know the function λ (·) and hence don’t know the actual values of Pr (Zi = 1) and Pr
(
Zj = 1

)
;

we know only that these two values are equal. Therefore, if we construct a block, b, that consists

of units i and j ̸= i, then each possible assignment within that block has an equal probability of

realization. If each possible assignment has an equal probability, then an observational study can

be analyzed as if it is a uniform, block randomized experiment (for more on the analysis of block,

randomized experiments, see Gerber and Green, 2012, chapter 4). This approach allows us to avoid

directly estimating λ (·), although there are alternative approaches that do so and subsequently

use these estimated values (known as estimated propensity scores) as a basis for inference (see

Robins et al., 2000).

Scholars can therefore attempt to make an observational study as experiment-like as possible

by creating matched blocks on the basis of observed covariates that determine units’ treatment

assignment probabilities. A range of matching algorithms exist to improve covariate balance and

hence make observational studies like experiments as much as possible (at least on the basis of

observed covariates). For more on this topic, see Hansen (2004), Diamond and Sekhon (2013), Sävje

et al. (2017) and Zubizarreta (2012), among others. After matching (or perhaps weighting or non-

parametric modeling) and favorable comparisons with actually randomized designs, researchers

then must confront the fact that their observational studies are not randomized studies. This

leads directly to the topic of sensitivity analyses.
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Sensitivity to Assumptions in Uncontrolled Research Designs
Thus far, we have considered cases in which either the probability distribution on Ω is known by

random assignment or units’ assignment probabilities are a function of only observed covariates.

But in an observational study, we rarely know – let alone observe – all relevant covariates. We

now consider deviations from the assumption that units’ assignment probabilities are determined

by only observed covariates and subsequently assess how one’s inferences would change under

violations of this assumption.

A powerful, design-based framework for such a sensitivity analysis is given by Rosenbaum

(2002). Before explaining this framework, we need to define a few additional terms. First, the

treatment odds for unit i ∈ {1, . . . , N} is πi

(1−πi)
, which is simply the ith unit’s probability of

assignment to treatment divided by that unit’s probability of assignment to control. The treatment

odds ratio for any two units i and j ̸= i is simply the ratio of the ith unit’s treatment odds and

the jth unit’s treatment odds. If units’ treatment odds are a function of only observed covariates

and the researcher is able to obtain balance on all of these observed covariates, then the treatment

odds for units i, j ̸= i : xi = xj is identical and their treatment odds ratio is 1.

Rosenbaum (2002) considers what happens when units’ treatment odds are a function not only

of observed covariates, x, but also an unobserved covariate, u. Under the assumption of a logistic

functional form between all units’ treatment odds and baseline covariates, as well as the constraint

that 0 ≤ u ≤ 1, one can write the treatment odds of the ith unit as follows:

πi

(1− πi)
= exp

{
κ (xi) + γui

}
log
(

πi

(1− πi)

)
= κ (xi) + γui,

where κ (·) is an unknown function and γ is an unknown parameter, and the treatment odds ratio
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for units i and j is:

(
πi

1−πi

)
(

πj

1−πj

) =
exp

{
κ (xi) + γui

}
exp

{
κ
(
xj

)
+ γuj

}
= exp

{(
κ (xi) + γui

)
−
(
κ
(
xj

)
+ γuj

)}
.

If xi = xj, then κ (xi) = κ
(
xj

)
and, hence, the treatment odds ratio is simply:

exp
{
γ
(
ui − uj

)}
.

Since ui, uj ∈ [0, 1], the minimum and maximum possible values of
(
ui − uj

)
are −1 and 1. There-

fore, the minimum and maximum possible values of the treatment odds ratio are exp {−γ} and

exp {γ}. After noting that exp {−γ} = 1

exp{γ} , we can bound the treatment odds ratio between i

and j as follows:

(15) 1

exp {γ}
≤

(
πi

1−πi

)
(

πj

1−πj

) ≤ exp {γ} .

We can denote exp {γ} by Γ and subsequently consider how one’s inferences would change for

various values of Γ.

For example, let’s say that a researcher obtains balance via stratification on all observed co-

variates – such that the design closely resembles a uniform, block randomized experiment – and

subsequently tests a strong null hypothesis under the assumption that all units’ treatment odds are

identical. Now the researcher considers deviations from this assumption. Different assumptions

about u and γ imply differing probabilities of possible assignments, which, as Rosenbaum (2002,

chapter 4) shows, can be represented by

(16) Pr (Z = z) =
exp

{
γz′u

}∑
z∈Ω exp {γz′u} .

To return to the working example from Table 41.1, let’s imagine that the realized assignment
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was z8, which yielded an observed test statistic of 11.6667 and a p-value of 0.05 (see Figure

41.3). We calculated that p-value under the assumption that all units had identical probabilities

of assignment. We could relax that assumption and assume that units do not have identical

assignment probabilities. For example, we might first assume that Γ = 2, which implies that

γ = log (2) ≈ 0.6931. The quantity γ is the coefficient of a unit’s unobserved baseline covariate

ui. If all units have the same value of this unobserved covariate — i.e., ui = uj for all i ̸= j —

then all units’ assignment probabilities will remain identical. A conservative approach therefore

might instead find a vector u that, given a value of γ, will maximize the p-value of a test of

the strong null hypothesis of no effect. In this particular example, it is straightforward to see

that u′ =
[
1 0 0 1 1 0

]
maximizes the p-value for an upper one-sided test of the strong

null hypothesis of no effect. In general, different procedures exist for finding the vector u that

maximizes (or minimizes) the p-value for a given value of Γ (see Gastwirth et al., 2000; Rosenbaum,

2018; Rosenbaum and Krieger, 1990). Figure 41.8 illustrates how the respective null distributions

would differ under Γ = 1 and Γ = 2 in which u′ =
[
1 0 0 1 1 0

]
.
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Figure 41.8: Distributions of Difference-in-Means test statistic under strong null of no effect when z8 is
the realized assignment under (a) a model where an unobserved covariate has no effect on
odds of treatment, Γ = 1, and (b) a model where an observed covariate doubles the odds
of treatment, Γ = 2.

Notice that under Γ = 1 and Γ = 2, the observed test statistic remains fixed at 11.6667. The

set of 20 null test statistic also remains fixed for Γ = 1 and Γ = 2. The value of Γ changes only

the probability associated with each of the null test statistics. As we can see, when Γ = 1, the

p-value is 0.05, but when Γ = 2, the p-value increases to approximately 0.1270. The researcher is

no longer able to reject the strong null of no effect at a level of α = 0.10 when Γ = 2 compared to

when Γ = 1, and this is one way in which researchers can assess the sensitivity of their inferences

to assumptions about the research design.

This approach is not the only way to formalize the impact of the assumptions underlying the

‘as-if randomized’ research designs used for causal inference when researchers have little to no

control over the selection process of the main explanatory variable. See also Hosman et al. (2010)

for an approach focusing on regression coefficients and regression-based adjustment, as well as an
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application by Chaudoin et al. (2018) of ideas like these to problems in international relations.

Conclusion
Statistics and research design help us learn about general and abstract social science theory using

concrete and specific observations. Observation helps us learn about theory, but observation occurs

using the tools of research design and they are summarized, described and interpreted using the

tools of statistics. In fact, we have shown that certain counterfactual causal quantities can never

be directly observed, and that our ability to report with confidence about such unobserved causal

effects depends heavily on statistical tools, which, in turn, depend on research design for their

operation. The persuasiveness of claims about links from an estimate or p-value to an unobserved

causal effect and general theory depends on the clarity of each step. At the most nitty-gritty

level, we want our tools to work well – our estimators and tests should err in known and controlled

manners and should err rarely.12 We have asked, ‘How can we know that tools do the work that we

want them to do?’ Additionally, we have shown how to use the facts of research design to answer

that question and to justify use of these common tools. This means that when we want to persuade

an audience that our findings support a given theory (or urge modification of it), we do not need

our audiences to believe that (1) we have a random sample from a well-defined population, (2) that

the outcome arises from some known probability process (like a normal or zero-inflated Poisson

distribution) or (3) that the treatment or selection process relates to background covariates in

some known (often linear and additive) fashion. Instead, in a randomized experiment, we ask that

a reader believe that our research design correctly describes the physical processes that occurred

in the research (a request that is not hard to verify and assess). In an observational study, we ask

readers to agree that the as-if randomized approach is reasonable, and we present direct evidence

comparing observational designs to randomized experiments in order to make the provisional as-if

randomized approach easier to grant.

In explaining reliable procedures, we have used a very simple set of examples. Our simpli-

fications include the use of only two experimental conditions (treatment and control), yet the

general modes of inference described in this chapter can be straightforwardly applied to factorial
12We did not assess tools like randomizers or sampling schemes in this paper, but those tools are equally important

in the effort to advance theory through observation.
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experiments and other contexts with multiple treatments (see Dasgupta et al., 2015). A second

such simplification has been the Stable Unit Treatment Value Assumption (SUTVA) (Cox, 1958;

Rubin, 1980, 1986), which, in the case of a binary treatment variable, implies that all units have

only two potential outcomes. Yet both estimation (see Aronow and Samii, 2017; Hudgens and

Halloran, 2008) and testing (see Bowers et al., 2013, 2016; Rosenbaum, 2007) are possible when

units have more than two potential outcomes due to interference between units, for example, in

the context of experiments on networks. Furthermore, we have focused on randomized experi-

ments and only briefly pointed to the strategy of ‘as-if randomized’ approaches to estimation and

testing in observational studies. We explained that such approaches, when paired with sensitivity

analyses, can enable persuasive statistical inferences about causal effects when the researcher lacks

control over the design. In other words, once an observational research design compares favorably

to the standard of an equivalent experiment (the way that a matched design can be compared to

a block-randomized experiment), statistical inference about causal effects can use the same proce-

dures, provisionally justified in the same way, as in a randomized experiment if also followed by a

sensitivity analysis.

This focus on the basics – on ensuring that our statistical tools do what they should – leaves

larger questions unexplored. For example, some researchers would prefer to make inferences about

not only counterfactual causal effects among units in a given study but also about future units

in data contexts that differ from the one under study. One might desire unbiased and consistent

estimators, as well as valid and powerful tests, not only based on the research design generating the

data collected here and now, but also for unknown future research designs guiding data collection

elsewhere and at other times. Forecasting causal effects is an active research area (for only a few

recent works on the topic, see Bisbee et al., 2017; Coppock et al., 2018; Dehejia et al., 2019; Pearl,

2015; Stuart et al., 2015). Whether or not a researcher or policy-maker would like a formal forecast

of the causal effects of an intervention from one study to a new context (in time, space and/or

units), information provided by a single study to the motivating theoretical question still depends

on the reliability of the tools used to conduct and analyze the study. We have focused on showing

how the reliability of such procedures is based on the research design itself and leave questions
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about the properties of procedures for forecasting causal effects as a separate, though important,

topic.

Design-based causal inference emphasizes inferring a counterfactual quantity, not a quantity in

a population or of an outcome-generating model. Such an emphasis arises naturally from a wide

range of social science research contexts, such as (1) when units are not a random sample, e.g.,

when the units are administrative units like schools or countries or convenience samples arising

without a known chance process, or (2) when probability models of outcomes – and their structural

relationship to explanatory variables – are difficult to write or justify, e.g., when an outcome can be

plausibly modeled by multiple different likelihood functions. In such contexts, simple comparisons

based on the research design can advance social science theory and avoid debates about data models.

When strong theory generates clear probability and structural models, a model-based justification

for statistical inference might be preferred, although we would want such modes of inferences to

satisfy the same properties discussed in this chapter: tests should not mislead and estimators

should produce estimates close to the truth. The model-based approach to showing whether these

characteristics hold is well described in most statistics textbooks, and we recommend Cox (2006)

for an overview.

A general question nevertheless remains: are design-based procedures better or worse than

model-based procedures for advancing social science theory or policy learning? Design-based infer-

ence is simple, easily interpretable and can ensure that estimators and tests are reliable based on

few assumptions, where the assumptions tend to be easily defended in terms of the known features

of the research design. But does design-based inference possess reliable properties only for narrowly

defined research questions? To be sure, there is nothing intrinsic to design-based inference that

requires scholars to use only specific estimators that focus only on specific estimands, such as mean

causal effects, or to test only certain hypotheses about no causal effects instead of others. And,

although we did not show it here, it is straightforward to assess the properties of non-standard

estimators and tests by representing the research design and simulating from it (see Blair et al.,

2019, for an example of a framework for simulation based assessment of estimators and tests). For

only one example of the flexibility of design-based approaches, imagine that we wondered whether
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a certain non-linear structural model described well a relationship between a causal driver (like

an experimental treatment) and an outcome. In this case, Bowers et al. (2013, 2016) show how

the evidence against structural models of unobserved potential outcomes can be generated and

hypothesis tests created, i.e., there is nothing about design-based approaches that precludes the

use of structural models. That said, a clear difference of means can often teach enough about

a complicated structural theory such that there is no need to complicate the research design or

statistical inference tasks. In the end, all else equal, reliable procedures advance scientific knowl-

edge more than unreliable procedures do. For this reason, one of the benefits of engaging with

design-based inference is that it brings clarity to the task of judging and choosing our statistical

tools and provokes us to directly confront and grapple with the conditions under which evidence

can be reliably interpreted as evidence for or against causal claims.
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